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Both pressure distribution and force measurement techniques have been employed to measure
the fluidelastic forces on one of two staggered circular cylinders, of equal diameter, in air
cross-flow, for 10 different geometrical arrangements. One cylinder is forced to oscillate
transversely to the flow, while the other cylinder remains stationary, and measurements are
made either on the oscillating or the stationary cylinder. The forcing frequency, f, is varied from
1 to 16 Hz, with a fixed half peak-to-peak amplitude of 0)043, 0)047 or 0)17 D; the cylinder
diameter, D, is fixed at 48)7 mm (1)9 in) and 114)3 mm (4)5 in), respectively, for the force- and
pressure-based experiments. The free-stream velocity, º, is varied from 10 to 35 m/s, and this
leads to 4]1044Re42]105 and 154º/fD4300. Pressure- and force-based measure-
ments are post-processed in the time and frequency domains, respectively. The amount of
hysteresis in the dynamic force coefficients versus cylinder displacement plots increases signifi-
cantly with decreasing º/fD. The corresponding magnitudes and phase angles of the fluidelastic
forces depart rapidly from the asymptotic values when º/fD is reduced below a critical value.
This critical value of º/fD is very sensitive to the geometrical arrangement of the two cylinders:
it is large when the cylinder is in a sensitive region (where there are rapid changes in static force
coefficient with cylinder displacement), and it is much smaller away from these regions.
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1. INTRODUCTION

CYLINDRICAL STRUCTURES exposed to fluid cross-flow are found in many practical applica-
tions; for example, tube banks in heat exchangers, power transmission lines, marine risers,
chimneys and space shuttles subject to atmospheric cross-winds. These structures are
subject to flow-induced vibration due to fluid—structure interactions, and possibly even to
static or dynamic instabilities. Numerous failures of many practical applications of cylin-
drical structures subject to fluid cross-flow have been reviewed by Blevins (1977, 1990),
Paı̈doussis (1980, 1981, 1983, 1993) and Chen (1987a, b). The cost associated with a typical
practical failure can easily be of the order of a million dollars. Thus, it is not surprising that
extensive effort has been, and still is, focused on the study of such flow-induced vibrations.

A great deal of work has been concerned with the excitation mechanisms associated with
flow-induced vibration of cylindrical structures subjected to cross-flow in the last three
decades. It is generally agreed that the three principal excitation mechanisms of flow-
induced vibration are turbulent buffeting, vortex shedding and fluidelastic instability
(Paı̈doussis 1981). The self-excited fluidelastic instability is potentially the most catastrophic.
0889-9746/98/030259#36 $25.00/fl970140 ( 1998 Academic Press Limited
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1.1. FLUIDELASTIC FORCES ON CYLINDERS IN CROSS-FLOW

One way to better understand the fluidelastic behaviour of cylindrical structures subjected
to cross-flow is to measure the fluidelastic forces on them. The fluidelastic force in this paper
is defined as the dynamic component of the fluid force exerted on a structure, due to either
its own motion or the motion of a nearby structure. Generally speaking, measurement of
a fluidelastic force with reasonable accuracy is difficult. One reason for this is that the ‘‘raw’’
data from measurements include other fluid dynamic forces, namely those due to turbulent
buffeting and periodicity in the flow. In addition, in the case of force measurements on an
oscillating cylinder, the fluidelastic force is combined with the inertia force, and extracting
the fluidelastic force, which may be smaller than the inertia force, is difficult. It is also noted
that because of obvious advantages, fluidelastic force measurements are often conducted in
wind tunnels, rather than in water. However, the fluidelastic force in air is much smaller
than that in water, since the density of air is about 103 lower than that of water.
Consequently, it is more difficult to obtain the fluidelastic force with reasonable accuracy in
air-flow than in water-flow. It is also important to note that complete information for
a fluidelastic force requires both magnitude and phase or, alternatively, both real and
imaginary components.

Considering the foregoing, it is not surprising that there is still a lack of sound fluidelastic
data in the literature. Nonetheless, complete information on the fluidelastic force has been
presented by Otsuki et al. (1974), Sarpkaya (1978), Tanaka & Takahara (1980, 1981),
Goyder & Teh (1984), Bearman & Luo (1988), Luo & Bearman (1990), and Chen et al.
(1994), among others; earlier work by Bishop & Hassan (1964) and Tanida et al. (1973)
should also be mentioned. In general, these studies involve either forced oscillation or free
vibration of a flexibly mounted solitary cylinder [e.g., Otsuki et al. (1974), Goyder & Teh
(1984), Bearman & Luo (1988), and Luo & Bearman (1990)], one or more cylinders in a tube
row (Chen et al. 1994), or one or more cylinders in a tube array (Tanaka & Takahara 1980,
1981).

1.2. SCOPE OF THIS STUDY

This study presents a series of pressure and force measurement results on two staggered
circular cylinders of equal diameter subjected to air cross-flow. One of the cylinders is forced
to oscillate transversely to the flow direction, while the dynamic forces are measured on
either the same or the stationary cylinder. There are two main reasons for investigating the
presumably simpler case of two staggered cylinders, instead of studying tube arrays, for
example. First, the twin-cylinder system is a representative geometry, actually or as an
elemental component in more complex geometries, of practical situations such as in
transmission lines, heat exchangers and marine risers. Second, the flow characteristics for
the twin-cylinder case are fairly well understood, at least in the static situation. The
fluidelastic forces which are present in a tube array exposed to cross-flow depend, among
other parameters, on the flow characteristics, which are predominantly determined by the
geometrical arrangement of the array. The objective here is to search for possible relation-
ships between the flow characteristics for two staggered cylinders when they are stationary,
and the fluidelastic forces acting on them when one of them is forced to oscillate transverse-
ly with a small amplitude (A/D(0)2). It should be noted here that, particularly in sensitive
geometrical arrangements (to be defined and explored later), the fluidelastic forces may be
nonlinearly related to A/D; hence, in general, the results with one particular A/D are not
easily compared to those with another.
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The aim of this study is to examine how the fluidelastic forces (in terms of magnitude and
phase angle, or the force coefficient-cylinder displacement path) vary with the reduced flow
velocity (º/fD) for different geometrical arrangements of two circular cylinders. Part of this
work has been documented in graduate theses (Pinnell 1987; Sychterz 1990; Wang 1995),
and has been presented in conferences by Price et al. (1988) and Paı̈doussis et al. (1994). This
is the first archival publication of part of that work, as well as newer work. In particular, this
paper focuses on the experimental techniques, procedures, data analysis methods and
presentation of the experimental results. The fluidelastic results presented here can be used
to test the validity of models used for predicting the fluidelastic forces on cylindrical
structures in cross-flow, e.g. in Ting et al. (1997), where the applicability of the quasi-static
and quasi-steady assumptions are tested for these configurations.

In general, as a cylinder is displaced statically in the transverse direction, the fluid forces
on it and on the other cylinder change. If the cylinder is forced to oscillate over the same
transverse path at a given frequency, the fluid forces at any given position differ from the
static values, so that, if one plots the total dynamic drag or lift force versus displacement,
one generally obtains a hysteresis loop, dependent on geometry and frequency. Further-
more, the fluidelastic components of the force coefficients are not equal to the slope
obtained from the curve of the static coefficients versus displacement. If, however, the
forcing frequency of oscillation tends to zero, the dynamic force coefficients approach the
static values of the appropriate force coefficient slopes, and the hysteresis in the dynamic
force versus cylinder displacement plots should vanish.

2. STEADY FLOW PAST TWO STAGGERED CIRCULAR CYLINDERS

The flow field around a pair of stationary cylinders in cross-flow is very complex and has
been studied extensively. Interference between two cylinders will occur when they are
sufficiently close to each other, or when the downstream cylinder is adjacent to or within the
wake of the upstream one. The three types of flow interference suggested by Zdravkovich
(1987) are (i) wake interference, (ii) proximity interference, and (iii) combined wake and
proximity interference. The boundary separating wake interference from no interference is
defined as the line along which the lift coefficient on the downstream cylinder becomes less
than 0)01; this boundary is beyond the width of the wake of the upstream cylinder.
Proximity interference takes place when the cylinders are close to each other, but neither of
them is immersed in the wake of the other. Combined wake and proximity interference
represents a combination of (i) and (ii).

A map of the static force coefficients for two circular cylinders of equal diameter subjected
to cross-flow in the subcritical Reynolds number regime, as furnished by Zdravkovich
(1977, 1987), is regenerated here as Figure 1. Contours of constant static drag and lift
coefficients are plotted in the ¸/D versus¹/D plane. (The bold numerical values with arrows
designate the 10 different cases considered in this study and will be discussed later.-) Closely
packed contours denote regions where small spatial variations in cylinder position can lead
to large changes in the static force coefficients. Oscillating the cylinder in these high-
gradient regions is expected to result in more complicated fluidelastic characteristics,
compared to oscillating it in lower gradient regions. The two sensitive flow regions of
particular interest here are the ‘‘inner’’ and ‘‘outer’’ lift peaks, which are centred on the
-Some of the cases studied in this paper are for negative ¹/D, but for the sake of clarity and because the wake is
symmetric about ¹/D"0, they are shown in Figure 1 for positive ¹/D.



Figure 1. Static force coefficient map for two circular cylinders of equal diameter in cross-flow in the subcritical
Reynolds number regime (Zdravkovich 1987): (a) lift coefficient; (b) drag coefficient. Proximity and wake interfer-
ence regions are designated with the letters ‘‘P’’ and ‘‘W’’, respectively. The corresponding subdivisions of these two

interference regions (e.g., the meaning of ‘‘P-SSA’’) and other details are explained in Zdravkovich (1987).
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in Figure 1; the inner and outer lift peaks are centred
near (1)24¸/D43)5 and ¹/DK0)2) and (¸/D54, ¹/DK1)4), respectively. All of the
experimental cases considered in this paper, except one, are either in or around these
sensitive flow regions.

The cause for the outer lift peak may be explained in the following three augments. First,
for ¸/D larger than about 3 and ¹/D larger than 1)4, decreasing ¹/D by moving the cylinder
closer towards the centre-line of the upstream cylinder results in a progressive entrainment
of the flow into the wake of the upstream cylinder (Zdravkovich 1977, 1987; Ohya et al.
1989). The flow accelerates as it is squeezed into the gap, and this increase in velocity
causes a reduction in pressure, and hence, produces a lift on the downstream cylinder
directed towards the wake centre-line of the upstream cylinder. Second, the corresponding
stagnation point of the downstream cylinder is shifted away from the wake centre-line of the
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upstream cylinder (Mair & Maull 1971; Price 1976), indicating a velocity vector pointing
downstream and towards the wake centre-line of the upstream cylinder. A resolved
component of this drag force in the lift direction gives a lift force acting towards the
centre-line of the upstream wake, and may account for about 25% of the total lift force at
the outer lift peak (Price 1976). Furthermore, and this is the last of the three arguments,
additional circulation produced along the inner side (the side closer to the wake of the
upstream cylinder) of the downstream cylinder causes its wake to be deflected outward,
away from the wake centre-line of the upstream cylinder, and this also contributes to the
total lift force (Price 1976). In short, all three mechanisms contribute to the total lift force,
and their relative weight appears to depend on parameters such as ¸/D and Re. The total lift
force peaks at ¹/DK1)4, beyond which it decreases with further reduction in ¹/D.

The inner lift peak is attributed to the existence and sudden disappearance of the gap flow
between the cylinders as ¹/D decreases. Near the inner lift peak (1)24¸/D43)5 and
0)24¹/D40)5), the inner side of the downstream cylinder crosses the wake centre-line of
the upstream one, and the corresponding flow conditions are such that most of the fluid
approaching the downstream cylinder passes through the gap between the two cylinders
(Zdravkovich & Pridden 1977; Zdravkovich 1987). Decreasing ¹/D, by moving the down-
stream cylinder closer to the wake centre-line of the upstream one, accelerates the gap flow
significantly as the flow is squeezed by the two cylinders. This intense gap flow is thought to
be responsible for the large lift force directed towards the wake centre-line of the upstream
cylinder; the lift force peaks at ¹/DK0)2. With further decrease in ¹/D, however, the
upstream cylinder blocks the gap, and the flow passes around the cylinder pair. This
switching from a strong gap flow into one which wraps around the downstream cylinder
results in a sudden drop in the lift force as ¹/D is decreased from 0)20 to around 0)15 (Price
& Paı̈doussis 1984; Zdravkovich 1987).

3. DESCRIPTION OF A FLUIDELASTIC FORCE

The fluidelastic component of a fluid force on a body is motion-dependent (Chen 1987b). It
exists only because of the motion of a body and vanishes with cessation of the motion
(Parkinson 1989; Price 1995). As previously mentioned, the fluidelastic force can be
expressed either in terms of magnitude and phase (Bishop & Hassan 1964; Tanaka
& Takahara 1980; Bearman & Luo 1988; Chen 1989), or in terms of real and imaginary
parts (Goyder & Teh, 1984; Chen et al. 1994). The former of the two is used throughout this
paper. A linear fluidelastic force may be decomposed into added mass, fluid damping and
fluid stiffness terms. The added mass term is 180° out of phase with the displacement, the
fluid damping term is in quadrature (90°) with the displacement and the fluid stiffness term
is in phase with it.

In this study, the fluidelastic force coefficients are defined as
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where j"1 or 2 for drag and lift, respectively, F is the force, o is the density of air and l is
the length of the cylinder segment in the wind tunnel. They are represented in terms of their
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4. EXPERIMENTAL APPARATUS

The experiments involve two circular cylinders of equal diameter in air cross-flow in a wind
tunnel. The forces on one of the cylinders are measured, either indirectly using pressure
transducers or directly using force transducers, while forcing either the same cylinder or the
other one to oscillate harmonically in the direction transverse to the free stream.

4.1. THE WIND TUNNEL

The entire series of tests have been conducted in a wind tunnel instead of a water tunnel,
mostly due to the difficulty in sealing when oscilating a cylinder in a water tunnel. The wind
tunnel used in this study is an open-ended, blow-down tunnel, with a 1)83 m (6 ft) long,
0)91 m (3 ft) wide and 0)62 m (2 ft) high test-section. The free-stream velocity is in the #X
direction, which is also the positive drag direction, while positive lift is in the #½ direction;
see Figure 2. The wind tunnel is capable of generating steady wind speeds up to 40 m/s when
the test-section is empty. During testing, the wind speed is monitored by a Betz manometer,
which measures the pressure drop across the contracting section. This was calibrated by
measuring the dynamic pressure in the working section with a pitot-static tube. The
relationship between the pressure drop in the contracting section and the dynamic pressure
in the free stream is linear, with a slope repeatable to within $5%. In the empty
test-section, the boundary-layer thickness is less than 18 mm, outside of which the flow
velocity variations are less than 0)5%, and the turbulence intensity is less than 0)8%. A more
detailed description of the wind tunnel may be found in Pinnell (1987).
Figure 2. Relative position of the two circular cylinders in cross-flow.



FLUIDELASTIC FORCES FOR STAGGERED CYLINDERS IN CROSS-FLOW 265
The relative position of the two cylinders is shown in Figure 2. The streamwise and
cross-stream distances between cylinders are designated as ¸ and ¹, respectively, and P is
the pitch.

4.2. THE SCOTCH-YOKE MECHANISM

One of the most critical parts of the experimental apparatus is the mechanism providing the
forced oscillation. This mechanism is required to produce a harmonic oscillation in the
transverse direction, of amplitude up to 19)4 mm half peak-to-peak, with minimum distor-
tion, over a frequency range of 1—16 Hz. To achieve this, the oscillating cylinder is mounted
via a yoke which fits around the outside of the wind tunnel (Figure 3); on the top and
bottom of the wind tunnel, linear bearings are used to guide the yoke and so prevent
cylinder motion in the streamwise direction. The yoke is attached to a scotch-yoke
mechanism, which provides the required harmonic oscillation; detailed descriptions are
given elsewhere (Pinnell 1987; Sychterz 1990; Wang 1995).

4.3. THE CYLINDER INSTRUMENTED WITH A PAIR OF PRESSURE TRANSDUCERS

The cylinders used in experiments where the forces were determined via pressure measure-
ments are made of seamless (6351-T6) aluminium tubing of 114)3 mm (4)5 in) nominal
outside diameter, with a wall thickness of approximately 2 mm. The use of these relatively
large diameter cylinders is essential in (i) producing adequate pressure change with angular
disposition on the surface, which can be measured with reasonably good accuracy, for
relatively small changes in ¹/D, i.e., small A/D and (ii) in providing enough room for the
electronic transducers, amplifier circuits, pressure transducer cables and hoses to be proper-
ly mounted inside the cylinder. Consequently, the aspect ratio of the portion of the cylinder
in the wind tunnel is low at 5)3, and the blockage ratio is a little high at 12)5%. All results
Figure 3. A cross-sectional schematic of the oscillating cylinder in the wind tunnel. The flow is perpendicular to
the paper, towards the reader.
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presented in this paper are not corrected for blockage since, for the twin-cylinder system
with interfering wakes, no well-tested method for such correction is known to the authors.

The pressure transducer used in the pressure measurement experiments is a Celesco
variable reluctance pressure transducer; it has a mass of 71 g, and a full-scale pressure range
of 50 mm of water (490 N/m2). Two entirely separate types of calibration procedures have
been used to verify the linearity of the pressure transducer. In the first, the two pressure
ports of the differential transducer were connected to upstream and downstream locations
of the contracting section of the wind tunnel. The transducer was calibrated using a Betz
manometer as the standard, over a range of differential pressure levels by adjusting the air
speed in the wind tunnel. In the second method, the transducer was connected in parallel to
an alcohol-filled inclined manometer and a disposabable ‘‘Plasti-Pak’’ syringe, where the
pressure was incremented using the syringe. In both calibrations, the linearity and hysteresis
of this transducer are found to be $0)5% full scale, or $2)5 N/m2. This suggests that for
a maximum error in dynamic pressure of 5%, the minimum flow velocity should be
approximately 9 m/s.

In the experiment, one port of the pressure transducer is connected by tubing to a 1)6 mm
diameter pressure port, located at the mid-span position of the instrumented cylinder. The
second pressure port is connected to a large reservoir mounted inside the cylinder. The
reservoir provides a constant pressure source, and all pressure measurements are made
relative to this. The effect of this constant pressure source is accounted for by zeroing the
transducer output when the pressure port is exposed to static pressure. A dummy trans-
ducer with both pressure ports connected to the reservoir is aligned in the same direction as,
and next to, the active transducer. This dummy transducer is used to measure the inertial
effects. The signal from the active transducer minus that from the dummy transducer gives
the ‘‘true’’ dynamic pressure signal. Because the two transducers have very similar sensitiv-
ities to temperature, positioning them next to each other and subtracting the signals has the
added advantage of providing temperature compensation for the pressure measurements.

4.4. THE CYLINDER INSTRUMENTED WITH TWO FORCE TRANSDUCERS

For measurements with force transducers, the cylinder diameter can be considerably
smaller than in the foregoing, thereby increasing the aspect ratio of the cylinders and
reducing the blockage in the wind tunnel. The diameter of the cylinders in these experiments
was reduced from 114)3 to 48)7 mm. The two cylinders are made of capped aluminium tubes
of 48)7 mm diameter and 1)5 mm wall thickness. The corresponding aspect ratio of the
cylinder segment in the wind tunnel is now 12)8, and the wind tunnel blockage is 5)3%.

Two ISF load cells with $15 N range are connected to the two ends of the instrumented
cylinder, outside the wind tunnel. For the cases where the instrumented cylinder is also the
oscillating cylinder, these force transducers are attached onto the yoke, located outside the
wind tunnel test-section. For the cases in which the instrumented cylinder is stationary,
these force transducers are supported on the exterior of the upper and lower walls of the
wind tunnel. They are positioned such that the force components in both the drag and lift
directions can be measured simultaneously. These force transducers are strain-gauge-type
sensors which allow both steady and fluctuating force measurements to be made. The
calibration of this force measuring system is performed statically using dead weights. Linear
load—voltage relationships are obtained from calibrations in both directions, and the
maximum repeatability or hysteresis errors in the drag and lift directions are typically 0)1 N
(2%) and 0)2 N (3%), respectively.



FLUIDELASTIC FORCES FOR STAGGERED CYLINDERS IN CROSS-FLOW 267
5. EXPERIMENTAL PROCEDURE AND DATA REDUCTION

The experiments presented in this paper have been conducted in three different series.
Pressure-based measurements were used in the first series, where the instrumented cylinder,
located downstream of a stationary cylinder, was forced to oscillate transversely to the flow
with A/D"0)17. In the second series, the oscillating cylinder was instrumented with force
transducers, and was forced to oscillate transversely with A/D"0)047, again with the other
cylinder stationary. In the last series of experiments, the fluidelastic forces on a stationary
cylinder, induced by the upstream cylinder oscillating transversely with A/D"0)043, were
measured using force transducers. The different procedures and data analysis methods used
in these three series of experiments are given in the following.

5.1. PRESSURE-BASED EXPERIMENTS

The fluidelastic forces can be deduced from the pressure distribution along the circumfer-
ence of the cylinder. Using this procedure, the skin friction contribution is neglected, since
over 99% of the drag of bluff bodies in the subcritical Reynolds number regime is due to
pressure forces. The advantage of using this procedure is that some aspects of the flow field
surrounding the cylinder can be inferred from pressure distribution measurements.

For a reasonably accurate representation of the flow field around the cylinder, pressure
must be measured at closely spaced locations around the circumference of the cylinder.
Ideally, the pressure distribution should be measured simultaneously at all desired locations;
however, this would require 36 pressure transducers for an angular resolution of 10°.
Evidently, this is not possible due to limited space inside the cylinder, large additional mass
to the oscillating cylinder, increased cost and possible flow interference between the
pressure tappings. Therefore, only one pressure tapping is employed, and one measurement
is made at a time. The cylinder is then rotated in 10° increments, until a complete pressure
distribution around the circumference is obtained. Assuming the pressure between adjacent
angular positions to vary linearly, the measured pressure distribution is integrated to give
the corresponding force coefficients. The major drawback of this method is that a consider-
able amount of time is required to complete one experiment.

For all pressure-based tests, the cylinder diameter and the half peak-to-peak amplitude
are fixed at 114)3 and 19 mm, respectively. For each case, the two cylinders are first aligned
so that they are parallel to each other and perpendicular to the horizontal plane of the wind
tunnel. The range of forcing frequencies is limited to 1 Hz4f46 Hz, due to the relatively
large cylinder mass and the maximum force rating of the scotch-yoke meachanism. The
corresponding ranges of Reynolds number and reduced flow velocity are 6]1044Re4
2]105 and 154º/fD4250, respectively.

Prior to the dynamic tests, static pressure measurements are made on stationary stag-
gered cylinders of the same geometrical arrangements as those used in the dynamic tests.
The static results are required as inputs to the quasi-steady model, as discussed in Ting et al.
(1997). The instrumented cylinder is rotated through 10° increments of the circumferential
angles read on a large protractor mounted on the upper end of the instrumented cylinder
outside the wind tunnel. The pressure at each angular location is measured using a DC
voltmeter. The static pressure in the wind tunnel is also simultaneously measured, and thus,
the pressure coefficient distribution around the cylinder is obtained. The static force
coefficients are obtained by integrating the pressure coefficients around the cylinder circum-
ference. This procedure is repeated with the cylinder statically displaced in seven evenly
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spaced steps in the transverse direction, covering the span of the intended oscillation
amplitude in the dynamic case, i.e. $A. Consequently, the variations of static force
coefficients with respect to step changes in ¹/D are obtained.

The experimental procedure is as follows. First, the instrumented, downstream cylinder is
forced to oscillate at the desired frequency. This is achieved by adjusting DC-motor speed
control until the oscillating frequency, as indicated by an accelerometer mounted inside the
oscillating cylinder, has the desired value. Then, for each circumferential position around
the cylinder, an ensemble average of the pressure variation with time as the cylinder
oscillates is obtained. A triggering device on the scotch-yoke mechanism is used to ensure
that each individual signal in the ensemble average is started at exactly the same point in the
oscillation cycle. As the pressure measurements are processed in the time domain, the signal
contains contributions from all types of fluid dynamic phenomena, including vortex
shedding and turbulent buffeting, in addition to the required fluidelastic force. Thus, a large
number of synchronized averages (typically 50) is required to filter out these unwanted
interfering signals. Having repeated this averaging procedure at 10° increments around the
circumference of the cylinder, the pressure signals may be integrated, giving the total (steady
plus unsteady) force coefficients, C

D
and C

L
, as functions of time. In addition, because the

cylinder is executing simple harmonic motion, its position may also be calculated as
a function of time. Thus, the variations of C

D
and C

L
with respect to cylinder displacement

as the cylinder is oscillated about its mean position are obtained.

5.2. FORCE-BASED EXPERIMENTS

A more direct way of measuring the fluidelastic forces on the cylinder is achieved when
using force transducers. Unlike pressure distribution measurements, force measurements
are significantly less time-consuming. However, the less laborious force measurement
technique cannot reveal anything on the detailed flow field around the cylinder.

Two different types of force measurement were made: either the forces are measured on
the oscillating cylinder while the other cylinder is kept stationary, or they are measured on
the stationary cylinder while oscillating the other cylinder.

The cylinders are first aligned, as before. With the oscillating cylinder at its mean position
in the lift direction, the relative positions of the two cylinders are measured with an accuracy
of $0)5 mm, thus determining ¸ and ¹ (and also P; see Figure 2) to the same accuracy.

The smaller cylinders used in the series of tests based on force measurements also lead to
lower Re, 4]1044Re41]105. Because of the reduced cylinder mass and improvements
made to the design of the scotch-yoke mechanism, the range of forcing frequency is widened
to 1 Hz4f416 Hz, and the corresponding range of reduced flow velocity is roughly
154º/fD4300. The half peak-to-peak amplitude is 2)3 mm for tests in which forces on
the oscillating cylinder are measured, and 2)1 mm for tests in which forces on the stationary,
downstream cylinder are measured. (The difference in oscillation amplitude is due to small
changes made to the scotch-yoke mechanism, i.e., retightening of the screws on the
scotch-yoke mechanism two years after completion of the first series of force-measurement
tests.)

The measured forces can be processed in the time domain in a similar way to that used for
the pressure measurements. However, the procedure can be simplified considerably when
the measurements are post-processed in the frequency domain. In the frequency domain, all
the fluid dynamic force components are distinguishable. The fluidelastic forces can easily be
isolated from the steady and vortex-shedding forces, and the inertia forces, if present, can be
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subtracted vectorially. Moreover, the noise interference, which may include both turbulent
buffeting and electronic noise, is limited to the component at the forcing frequency only.
This noise, which is uncorrelated with the cylinder motion, can be filtered out using an
averaging process. Because of these advantages, the force results presented here were
analysed in the frequency domain. However, a disadvantage of this method is that the
actual path in the force versus displacement plot can only be approximated. This point will
become more obvious when we look at the dynamic results is Section 8.

In the frequency domain, the steady drag and lift forces are the corresponding DC values
at 0 Hz, measured on the instrumented cylinder while the oscillating cylinder is oscillating
at the desired frequency. These DC values can be obtained from the power spectra (in
frequency domain analysis); they are equal to the mean values in the signal time-traces (in
time domain analysis). Similarly, the static forces are the mean values in the time domain
when both cylinders are stationary, and these static values are equal to the corresponding
DC values in the frequency domain. For the force-based experiments, both the static and
steady force coefficients are deduced from the mean values in the time domain, and these
values are confirmed by the corresponding DC amplitudes at 0 Hz in the frequency spectra.

5.2.1. Measuring dynamic forces on the stationary cylinder
Consider the case where ¸/D"2)94 and ¹/D"!0)50 (Case 5; Table 1), with the forces
measured on the downstream, stationary cylinder, while oscillating the upstream cylinder in
the transverse direction. Typical fluidelastic signals before and after 30 synchronized
averages are shown in Figure 4. The forcing frequency is clearly shown in the spectra of the
fluidelastic forces. The vortex-shedding frequencies and the structural natural frequencies of
the instrumented cylinder and its supporting system, however, are off the scale of the
spectra, at much higher frequencies than the forcing frequencies.

In the synchronized averaging process, a specific cylinder motion (for example, when the
cylinder crosses the mean position in the lift direction with a positive velocity) is used to
trigger the averaging process, giving an ensemble average of segments of time traces starting
and ending at the same instants in the cycle of cylinder motion; the corresponding frequency
spectra are shown in Figure 4. It is clear from Figure 4 that signals which are uncorrelated
with the motion of the oscillating cylinder are reduced significantly, after 30 synchronized
averages. A further increase in the number of averages may improve the appearance of the
TABLE 1
A summary of the 10 twin-cylinder cases tested (arranged in decreasing P/D order)

Case P/D ¸/D ¹/D A/D Vibrating Instrumented Method of
cylinder cylinder measurement

1 5)02 5)00 0)50 0)17 Downstream Downstream Pressure
2 4)13 4)00 1)03 0)047 Downstream Downstream Force
3 4)12 4)00 1)00 0)17 Downstream Downstream Pressure
4 4)11 3)97 !1)05 0)043 Upstream Downstream Force
5 2)98 2)94 !0)50 0)043 Upstream Downstream Force
6 2)20 2)00 0)92 0)047 Upstream Upstream Force
7 2)06 1)84 !0)93 0)043 Upstream Downstream Force
8 2)01 2)00 0)17 0)17 Downstream Downstream Pressure
9 2)00 2)00 0)10 0)047 Downstream Downstream Force

10 1)51 1)50 0)20 0)17 Downstream Downstream Pressure



Figure 4. Typical PSDs from force signals before and after 30 synchronized averages: (a) C
D

for f"3 Hz; (b)
C

D
for f"16 Hz; (c) C

L
for f"8 Hz; (d) C

L
for f"14 Hz.
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signal somewhat; however, the magnitude and phase angle of the fluidelastic force do not
appear to alter. Thus, the number of averages is fixed at 30 for all cases in which the
fluidelastic forces on the stationary cylinder are measured.

5.2.2. Measuring dynamic forces on the oscillating cylinder
When the fluidelastic forces on the oscillating cylinder are required, the procedure is
somewhat more complicated. The added mass of the cylinder in the flowing fluid is assumed
to be the same as that in the static fluid, and the fluid damping and stiffness forces in still
fluid are assumed to be negligible; then, the inertia force due to the mass of the cylinder as
well as the added mass can be removed by subtracting vectorially the force signal measured
in still fluid from that measured in flowing fluid (Halfman 1952; Fung 1960; Bishop
& Hassan 1964; Tanida et al. 1973; Washizu et al. 1978). The same method is used here, but
the subtraction of an inertia force is replaced by a subtraction of mass, which increases the
accuracy of the result. If the forces exerted on the cylinder by the fluid are denoted by F and
X
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F
Y
, and the forces acting on the cylinder by the load cells are R

X
and R

Y
, the equations of

motion of the instrumented cylinder in the drag and lift directions are, respectively,

F
X
#R

X
"kÿ, F

Y
#R

Y
"(m

c
#m

a
) ÿ, (3)

where k is a constant (a small number indicating some coupling of the inertia forces in the
lift direction), ÿ is the cylinder acceleration, m

c
is the cylinder mass and m

a
is the added mass

of the cylinder. The corresponding equations in still air, for the oscillating cylinder, are

R
X0
"kÿ

0
, R

Y0
"(m

c
#m

a
) ÿ

0
, (4)

where the subscript o denotes that the quantity is measured in still air. It has been assumed
in equation (4) that the added mass in still air is the same as that in a flowing air stream, and
that the fluid damping and stiffness forces in still air are negligible.

The transfer-function method used by Goyder & Teh (1984) is employed here to obtain
the fluidelastic forces. A transfer function is the ratio of output to input, and yields both
magnitude and phase as a function of frequency. Taking the transfer function of equations
(3) and (4) with respect to ÿ and ÿ

0
, respectively, and subtracting one from the other at the

forcing frequency yields

F
X
ÿ
"

R
X0

ÿ
0

!

R
X

ÿ
,

F
Y
ÿ
"

R
Y0

ÿ
0

!

R
Y

ÿ
, (5)

in which all terms are evaluated at the forcing frequency, f. The same notation as in
equations (3) and (4), for the time domain, is used in the frequency domain. The effect of the
inertia force has been removed by subtraction of what is effectively a mass, R

X0
/ÿ

0
and

R
Y0

/ÿ
0
. Since the cylinder accelerations in the wind-on and wind-off experiments, ÿ and ÿ

0
,

may not be exactly equal, while m
c
, m

a
and k are more likely to be the same in the wind-on

and wind-off experiments, a subtraction in terms of mass is more accurate than that in terms
of inertia force.

A sufficient number of averages is used in the transfer function operations outlined above
to eliminate signals which are uncorrelated with the motion of the cylinder (e.g. due to
turbulence buffeting).

6. ERROR ANALYSIS

Suppose that a set of primary measurements is made and these measurements are then used
to calculate some desired result. The error in the result can be defined as the root-mean
square of the errors induced by all the primary measurements. If the result R can be
expressed as a function of the primary measurements a

1
, a

2
,2, a

n
, that is, R"R (a

1
, a

2
,

2, a
n
), then, the error in the result, e

R
, is given as (Holman & Gajda 1989)

e
R
"CA

LR

La
1

e
1B

2
#A

LR

La
2

e
2B

2
#2#A

LR

La
n

e
nB

2

D
1@2

, (6)

where e
1
, e

2
,2 , e

n
are the errors of the primary measurements.

A typical error analysis is performed on the steady drag coefficient, CM
D
, based on force

measurements, keeping in mind that the same evaluation can be performed on CM
L

and the
static force coefficients, Again, consider Case 5 (¸/D"2)94, ¹/D"!0)50; Table 1)
in which forces on the downstream stationary cylinder are measured, while oscillating
the upstream cylinder in the transverse direction. The steady drag coefficient,



272 D. S.-K. TING E¹ A¸.
CM
D
"(FM

D
!FM

D0
)/qDl, where FM

D
is the mean or steady force in the drag direction with the

wind on, FM
D0

is the corresponding zero value with the wind off, and q is the dynamic
pressure. Then, according to equation (6), the relative error of CM

D
can be expressed as

*CM
D

CM
D

"CA
*FM

D
FM
D
B
2
#A

*FM
D0

FM
D0
B
2
#A

*q

q B
2
#A

*D

D B
2
#A

*l

l B
2

D
1@2

. (7)

For a typical test at Re"7]104, the values for *FM
D
/FM

D
, *FM

D0
/FM

D0
, *q/q, *D/D and *l/l are

approximately 0)04, 0)05, 0)03, 0)002 and 0)06, respectively. Thus, the relative error of CM
D

is
roughly 9%. The relative error of CM

L
is slightly higher at about 10%, due to larger errors in

the terms, *FM
L
/FM

L
, *FM

L0
/FM

L0
. As the relative position of the two cylinders is measured to an

accuracy of $0)5 mm, the associated errors in the force coefficients are generally small.
However, since the instrumented cylinder in Case 5 (and also Cases 8—10) is in a sensitive
regime, where small spatial variations can lead to large changes in the force coefficients (see
Figure 1), small uncertainties in ¸ and ¹ can increase the total relative error somewhat.
Estimating from the static force coefficient versus cylinder position plots, the variations in
the static force coefficients with respect to $0)5 mm changes, in the cylinder position result
in an additional 2% relative error, increasing the total relative errors in CM

D
and CM

L
to about

11 and 12%, respectively. Similar calculations can be performed on other cases including
the static cases based on pressure distribution measurements. In general, the total errors in
the static (for both pressure- and force-based cases) and steady (for force-based cases) force
coefficients are less than 12%.

The error analysis for the dynamic coefficients for the force-based cases and the total
force coefficients for the pressure-based cases may appear to be more complicated than that
for the static and/or steady coefficients, but in fact it is similar. As the fluidelastic forces are
caused by cylinder motion, their accuracy depends on f and A, in addition to the other
parameters given in equation (7). Let us consider the magnitude of the fluidelastic drag
coefficient, DCI

D
D, for Case 5 (¸/D"2)94, ¹/D"!0)50). The relative error of DCI

D
D may be

expressed as

*DCI
D
D

DCI
D
D
"CA
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#A

*FI
D0

FI
D0
B
2
#A

*f

f B
2
#A

*A

A B
2
#A
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2
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D B
2
#A

*l

l B
2

D
1@2

, (8)

where FI
D

is the magnitude of the fluidelastic force in the drag direction with the wind on and
FI
D0

is the corresponding zero value with the wind off. In the frequency domain, FI
D0

is zero.
For a typical test at Re"7]104 and f"8 Hz, the relative errors for the terms on the
right-hand side are estimated to be roughly 0)15, 0, 0)02, 0)01, 0)03, 0)002 and 0)06,
respectively. Therefore, for this particular situation, the relative error in DCI

D
D is roughly

17%. For the same condition, the relative error in DCI
L
D is somewhat less at about 13%,

mostly because FI
L

is significantly larger than FI
D
. In general, it is probably correct to say

that, conservatively, the measured values for the dynamic force coefficient magnitudes, DCI
D
D

and DCI
L
D, for the force-based cases, and the total force coefficients, C

D
and C

L
, for the

pressure-based cases are reliable to within $20%. From repeatability tests, the absolute
errors in the measured phase angles, /

D
and /

L
, are found to be less than 15°.

7. STATIC MEASUREMENTS

In this section, the preliminary static test results on a single stationary cylinder are discussed
first, followed by the static results for the stationary staggered cylinders.



FLUIDELASTIC FORCES FOR STAGGERED CYLINDERS IN CROSS-FLOW 273
7.1. A SINGLE STATIONARY CYLINDER

The main reason for performing static tests on a single stationary cylinder is to compare the
results obtained here with those in the open literature. This comparison indicates how the
wind tunnel flow and the test model used in this study compares with those of other
experimenters, so giving an indication of the validity of the whole set of experimental results
obtained.

Pressure distributions around the circumference of the large stationary cylinder
(D"114)3 mm) with and without end-plates have been measured for 7]1044Re4
2]105. The pressure measurements are repeatable to within $0)07 in terms of pressure
coefficient. The standard deviation of the pressure coefficient peaks at approximately
70—80° and 280—290°; this indicates that boundary-layer separation occurs on both sides of
the cylinder at roughly 70—80° from the front stagnation point, which agrees with other
studies in the literature (Achenbach 1968; Batham 1973).

The effects of Re, end-plates and blockage have been considered for this single stationary
cylinder. The values of static drag coefficient, C

D
, without end-plates are about 16% lower

than those with end-plates. With end-plates, C
D

decreases from 1)14 to 0)98 as Re increases
from 6)8]104 to 2)0]105. These values of static drag coefficient for a single stationary
cylinder (D"114)3 mm), obtained using the pressure measurement technique, are within
the scatter of the values in the literature (K1)0—1)3), though somewhat lower than the
well-accepted value of 1)2 in the subcritical Reynolds regime (Fage & Falkner 1931; Shin
& Wambsganss 1977). Sealing the air leakage through the small opening between the
cylinder and the upper and lower walls of the tunnel can increase the static drag coefficient
by roughly 5%. Thus, the wind tunnel was properly sealed for all subsequent tests. Blockage
corrections using the formulae from Allen & Vincenti (1944) reduce the static drag coeffic-
ient by roughly 11%.

The forgoing static results for the large cylinder indicate that the values of static drag
coefficient obtained in this study are somewhat less than the expected value of 1)2, especially
if the present results are corrected for blockage. For this cylinder, the wind tunnel blockage
of 12)5% appears to be large enough to have a significant effect on the results and to make
direct comparison between the present results and others difficult. With a slightly larger
aspect ratio of 6 and the same blockage of 12)5%, West & Apelt (1982) found that
C

D
decreases significantly with increasing Re above 1)1]105; the same qualitative trend of

decreasing C
D

with increasing Re has been obtained here. Furthermore, Batham (1973)
found that for Re"1)11]105, increasing the free-stream turbulence from 0)5 to 12)9%
decreases C

D
from 1)17 to 0)41. Also, for Re"1)11]105 and a free-stream turbulence of

0)5%, C
D

decreases from 1)17 to 0)72 when roughening the cylinder surface using 0)5 mm
diameter sand particles (Batham 1973). For a free-stream turbulence of 1)4%, Norberg
& Sundén (1987) found that C

D
decreases from 1)36 to 0)48 when increasing Re from

1)09]105 to 2)25]105. In this study, the free-stream turbulence level was less than 0)8% i.e.
somewhat higher than the 0)5% for the low-turbulence case used by Batham. No particular
care was taken to ensure a smooth cylinder surface in the present study, although the cylinder
was not as rough as Batham’s rough cylinder. It appears that the combined effect of cylinder
roughness, free-stream turbulence and short aspect ratio could have lowered the critical
Reynolds number at which transition from subcritical to critical flow occurs to Re47]104

(Roshko 1961), so producing the low values of C
D

measured in these experiments.
The static forces on a stationary cylinder of 48)7 mm diameter without end-plates have

also been measured. For this more slender cylinder, the aspect ratio is higher (about 13), and
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the blockage is lower (about 5%). Without end-plates, the values of static drag coefficient
deduced using the force measurement technique are approximately 1)0 for
4]1044Re41]105. Accounting for the maximum possible error of 11% in C

D
, these

values are about 9% lower than the ideal value of 1)2. However, it is expected that utilizing
proper end-plates would increase the values of C

D
, so that they would be in better

agreement with the experimental data in the literature.
In conclusion, the static drag values on a stationary cylinder are either reasonable (large

aspect ratio cylinders) or the reasons for their divergence from standard values (low aspect
ratio cylinders) can reasonably be explained.

7.2. TWO STAGGERED CYLINDERS

The ten different cases of staggered cylinders considered in this study, arranged in order of
decreasing P/D, are summarized in Table 1. Each case is characterized by ¸/D, ¹/D, A/D,
which cylinder is being oscillated, which cylinder is instrumented and the measurement
technique.

The positions of the ten cases considered here are identified in the static force coefficient
map generated by Zdravkovich (1987) in Figure 1 (as indicated in Table 1, Cases 4, 5 and 7
are for negative ¹/D rather than positive ¹/D as shown in Figure 1). Though this static
force coefficient map is presumably applicable for any general case in the subcritical
Reynolds number regime, the values in Zdravkovich (1987) are deduced at Re"6)1]104.

Typical comparisons between the values of the static force coefficients obtained in this
study, and those estimated from Zdravkovich’s (1987) map at Re"6)1]104 are tabulated
in Table 2. (The steady force coefficient results in Table 2 will be discussed in the next
section.) Note that the discrepancy in Re, and more importantly, uncertainties in interpola-
tion for the force coefficients corresponding to any given ¸/D and ¹/D can lead to rather
significant variations in C

D
and C

L
. The somewhat larger discrepancies which are asso-

ciated with the pressure results are probably due to the small aspect ratio in the pressure-
measurement results. In general, the values for static force coefficients obtained in this study
are in fair agreement with those in Zdravkovich (1987).

8. DYNAMIC MEASUREMENTS AND DISCUSSION

Prior to presenting the fluidelastic results, the time-averaged steady force coefficient results
are discussed first. At the end of this section, an attempt is made to arrange all the cases
tested in a logical order.

8.1. TIME-AVERAGED STEADY FORCE COEFFICIENTS

It is known that when a solitary cylinder is oscillating with a reasonably large amplitude at
a high frequency, the steady time-averaged drag coefficient, CM

D
, can increase substantially as

a result of vortex-excited oscillations (Griffin 1980; Chen 1987a, p. 258), associated with
widening of the wake. The ratio of steady drag coefficient to static drag coefficient has been
found by Griffin (1980) to increase roughly linearly with increasing response parameter, ¼

r
,

for 14¼
r
43, where

¼
r
"A1#

2A

D B A
fD

ºSB (9)



TABLE 2
Comparisons between the static force coefficients from Zdravkovich (1987, denoted by ‘Zdrav’) at Re"6)1]104, and the static (C

D0
, C

L0
) and time-averaged

steady force coefficients (CM
D
, CM

L
) from the present study

Case ¸/D ¹/D
Re]10~4
(present)

C
D0

(present)
C

L0
(present)

C
D
s

(Zdrav)
C

L
s

(Zdrav) CM
D

(present) CM
L

(present)

1 5)00 0)50 11)6 0)35 !0)05 0)4 !0)2 0)27t for º/fD"44 !0)07t for º/fD"44
2 4)00 1)03 7)3 0)73 !0)43 0)7 !0)4 K0)67 for K!0)38 for

254º/fD4140 254º/fD4140
3 4)00 1)00 7)6 0)63 !0)43 0)7 !0)4 0)90t for º/fD"15 !0)54t for º/fD"15

11)6 0)58 !0)35 0)65t for º/fD"132 !0)41 for º/fD"132
4 3)97 !1)05 7)1 0)76 0)57 0)7 0)4 Between 0)74 and 0)76 Between 0)56 and 0)57

for 254º/fD4240 for 254º/fD4240
5 2)94 !0)50 7)1 0)21 0)60 0)4 0)6 Decreases from 0)22 to

0)18 with decreasing
º/fD from 240 to 30

Increases from 0)59 to
0)65 with decreasing
º/fD from 240 to 30

6 2)00 0)92 7)4 0)95 0)01 1)0 0)0 Between 0)92 and 0)93
for 304º/fD4160

K0)01 for
304º/fD4160

7 1)84 !0)93 7)1 0)60 0)17 0)7 0)2 Between 0)59 and 0)62
for 304º/fD4240

Between 0)17 and 0)18
for 304º/fD4240

8 2)00 0)17 7)6 !0)12 0)01 !0)2 0)0 !0)09t for º/fD"15 0)00t for º/fD"15
9 2)00 0)10 7)1 !0)11 0)03 !0)1 0)0 Between !0)13 and !0)11

for 304º/fD4250
Between 0)00 and 0)03
for 304º/fD4250

10 1)50 0)20 6)8 !0)07 0)01 0)0 0)0 !0)06t for º/fD"16 !0)03t for º/fD"16

s Estimated values from Zdravkovich (1987) at Re"6.1]104.
t Estimated from the mean values of the total force coefficients, C

D
and C

L
, for increasing and decreasing y with y"0.
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and S is the Strouhal number. It is important to note that while the steady drag coefficient is
roughly equal to the static drag coefficient at ¼

r
"1, the data-points show considerable

scatter (i.e., up to$0)4) for¼
r
51 and no data-points for¼

r
(1 are included in Griffin’s plot.

The maximum ¼
r
considered in this study is less than 0)5. For this small ¼

r
, CM

D
for

a solitary cylinder is not expected to depart significantly from the corresponding static
value. Typical comparisons between the static and steady force coefficients for the present
twin-cylinder cases are given in Table 2; keeping in mind that for the pressure-based cases
(Cases 1, 3, 8 and 10), A/D"0)17, and the oscillation amplitude is significantly smaller in
the force-based cases; i.e. A/D"0)047 for Cases 2, 6 and 9, and A/D"0)043 for Cases 4, 5
and 7. In all the force-based cases, except one (Case 5), the steady force coefficients, CM

D
and

CM
L
, remain invariant with respect to º/fD, over the range of conditions considered. In

general, these steady force coefficients are, within experimental error (note that the static
and steady tests were usually conducted on different days), equal to the corresponding static
values (C

D0
and C

L0
) when the ‘‘oscillating’’ cylinder is stationary at its mean lift position.

For these cases, the values of CM
D

and CM
L

are either scattered within a narrow range, or
remain approximately constant. For the cases where there are definite changes in CM

D
and

CM
L

with respect to º/fD, the trends, as well as the minimum and maximum values, are also
given in Table 2.

In Case 5, the steady force coefficients, CM
D

and CM
L
, measured on the stationary, down-

stream cylinder while oscillating the upstream cylinder, deviate from the static values,
C

D0
and C

L0
, with increasing forcing frequency. The steady force coefficients, CM

D
and CM

L
, for

Case 5 at Re"7)1]104 are plotted against the reduced flow velocity in Figure 5. Although
the deviations in CM

D
and CM

L
from C

D0
and C

L0
, respectively, for º/fD less than roughly 50

are small ((0)1), the results are consistent (over 5)5]1044Re49)5]104): CM
D

becomes
progressively smaller than C

D0
and CM

L
progressively more positive than C

L0
with decreasing
Figure 5. Steady force coefficients, CM
D

and CM
L
, for Case 5 (¸/D"2)94, ¹/D"!0)50, A/D"0)043) at

Re"7)1]104 as functions of reduced flow velocity, º/fD. Lines denote the static force coefficients, C
D0

and C
L0

,
obtained with the cylinder stationary at its mean position.
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º/fD (for º/fD(50). Possibly, the wake of the upstream cylinder may be widened at higher
oscillation frequencies; the resulting effect would be to effectively shift this configuration
into the inner lift flow conditions, thus decreasing the drag and increasing the lift of the
downstream cylinder. However, at the present time the authors have no direct evidence for
this hypothesis.

With larger A/D in the pressure-based cases, the effect of º/fD on the steady time-
averaged force coefficients is expected to be larger. Unfortunately, the steady time-averaged
force coefficients, CM

D
and CM

L
, were not measured in the pressure-based cases. The ‘‘mean’’

dynamic force coefficient for the pressure-based cases (cases 1, 3, 8 and 10) in Table 2 are
estimated from the curves of total force coefficients as functions of cylinder displacement.
The values shown in Table 2 are the mean values of force coefficients when y"0 for
increasing and decreasing y. These ‘‘mean’’ dynamic force coefficients are moderately
different from the corresponding static values, C

D0
and C

L0
. For the conditions considered,

the maximum deviation in the ‘‘mean’’ dynamic force coefficients from the corresponding
static coefficients, C

D0
and C

L0
, is less than 0)3. Because these ‘‘mean’’ force coefficients can

only be estimates of the true CM
D

and CM
L

in the pressure-based cases, direct comparison
between these pressure-based results and the force-based results discussed in the foregoing
cannot be made.

8.2. FLUIDELASTIC FORCE COEFFICIENTS

The dynamic results are discussed in an order inspired by the static force coefficient map of
Figure 1. Specifically, the discussion of the fluidelastic results is divided into four subsec-
tions, corresponding to their (¸/D, ¹/D) location in the map: (i) in the simple wake
interference region, (ii) near the outer lift peak, (iii) in and around the inner lift peak, and (iv)
in the weak proximity interference region.

8.2.1. Simple wake interference region
In Case 1 (¸/D"5)00, ¹/D"0)50, A/D"0)17, pressure analysis on the oscillating cylinder
in the time domain), the instrumented, oscillating cylinder is in the wake of the upstream,
stationary cylinder, but is relatively far away from both the inner and outer lift peaks; see
Figure 1. Thus, the flow structure is not sensitively dependent on small cylinder displace-
ments. Figure 6 is a plot of the total force coefficients (including both the dynamic and
steady components), C

D
and C

L
, as functions of the normalized cylinder displacement, y/D,

for Re"1)16]105 and º/fD"44. The figure shows that the total force coefficients do not
vary significantly over the range of y/D considered, and the amount of hysteresis is small.

8.2.2. Near outer lift peak
The instrumented cylinder in Case 3 (¸/D"4)00, ¹/D"1)00, A/D"0)17, pressure analysis
on the oscillating cylinder in the time domain) is again located in the wake of the upstream
stationary cylinder; see Figure 1. In this case, the cylinder oscillates near, but not in, the
outer lift peak region. Consequently, the total force coefficients, C

D
and C

L
, should vary

a little more with cylinder displacement compared to those of Case 1 under similar flow
conditions, i.e. for the same Re and A/D.

The total force coefficients, C
D

and C
L
, for Case 3 are plotted as functions of y/D in Figure

7(a) for Re"7)55]104 and º/fD"15, and in Figure 7(b) for Re"1)16]105 and
º/fD"132. The objective in constructing such figures is to study the effect of º/fD; hence,
ideally, Re should remain fixed while varying º/fD, thus excluding possible variations in the
flow due to change in Re. Unfortunately, the range of forcing frequency is limited by the



Figure 6. Total (steady plus unsteady) force coefficients, C
D

and C
L
, on the oscillating, downstream cylinder for

Case 1 (¸/D"5)00, ¹/D"0)50, A/D"0)17) at Re"1.16]105 and º/fD"44 as functions of cylinder
displacement, y/D.
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scotch-yoke mechanism, and is not wide enough to provide the required range of º/fD
without altering Re. Nevertheless, both Re"1)16]105 and Re"7)55]104 should be in
the subcritical flow regime°, and any effects on the dynamic forces caused by the change in
Re are expected to be small. Note that for this case, increasing Re from 7)55]104 to
1)16]105 decreases the magnitudes of C

D0
and C

L0
by roughly 0)05 and 0)08, respectively;

see Table 2. These changes in the static force coefficients are expected to shift the whole
C

D
and C

L
curves up or down by roughly proportional amounts, i.e., without affecting the

C
D

and C
L
versus y/D loops significantly. It is clear when comparing Figure 7(a) to 7(b), that

the amount of hysteresis decreases significantly when º/fD is increased from 15 to 132.
As expected, the dynamic force coefficients for Case 3 vary more widely with y/D compared

to those for Case 1; for the same Re, compare Figure 7(b) with Figure 6. In addition, the
amount of hysteresis in C

D
and C

L
for Case 3 is significantly larger than for Case 1.

Other than the differences in A/D and the measurement technique used, Case
2 (¸/D"4)00, ¹/D"1)03, A/D"0)047, force analysis on the oscillating cylinder in the
frequency domain) is similar to Case 3, that is, the instrumented cylinder in Case 2 is also
oscillating in the wake interference region and is close to the outer lift peak. Typical values
for the magnitudes of fluidelastic force coefficients, DCI

D
D and DCI

L
D, and the phase angles of

CI
D

and CI
L

with respect to y(t), /
D

and /
L
, are plotted against º/fD in Figure 8(a, b).

Although DCI
D
D appears to increase slightly with increasing Re, the trend is weak; i.e., over

the range of conditions considered, Re has no significant effect on the fluidelastic force
coefficients. Figure 8 shows that DCI

D
D, DCI

L
D, /

D
and /

L
remain roughly constant for º/fD
° This is not certain, because of the discussion in the fourth paragraph of Section 7.1.



Figure 7. Total (steady plus unsteady) force coefficients, C
D

and C
L
, on the oscillating, downstream cylinder for

Case 3 (¸/D"4)00, ¹/D"1)00, A/D"0)17) as functions of cylinder displacement, y/D: (a) Re"7)55]104 and
º/fD"15; (b) Re"1)16]105 and º/fD"132.
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greater than about 60, tending asymptotically to the constant values shown as horizontal
lines. According to the quasi-static assumption, the dynamic values are approximately
equal to the quasi-static values (where the phase angle, /"0 or $180°) for a sufficiently
large º/fD. (In the time domain, these quasi-static values are indicated by near-zero
hysteresis in the dynamic force versus cylinder displacement plot.)



Figure 8. The fluidelastic force coefficients, CI
D

and CI
L
, on the oscillating, downstream cylinder for Case

2 (¸/D"4)00, ¹/D"1)03, A/D"0)047) as functions of the reduced flow velocity, º/fD: (a) magnitudes, DCI
D
D and

DCI
L
D; (b) phase angles of the fluid forces with respect to the cylinder displacement, /

D
and /

L
. The horizontal lines

denote the asymptotes which are defined as the averages of the three data-points at the largest º/fD.
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In order to better compare the results for Cases 2 and 3, typical results from Case 2 with
Re"7)7]104 in the frequency domain (Figure 8) are converted into C

D
and C

L
as

functions of y/D, in the time domain, and replotted in Figure 9. The conversion is achieved
simply by substituting the corresponding values for the magnitude, phase and frequency in



Figure 9. Total (steady plus unsteady) force coefficients, C
D

and C
L
, on the oscillating, downstream cylinder for

Case 2 (¸/D"4)00, ¹/D"1)03, A/D"0)047) at Re"7)7]104 as functions of cylinder displacement, y/D:
(a) º/fD"30; (b) º/fD"143.
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equation (2), and adding the corresponding steady values at each y/D. For Case 2, CM
D

and
CM

L
do not vary with changes in the forcing frequency, and hence the steady values at each

y value (for !A4y4A) are assumed to be equal to the corresponding static values.
The minimum and maximum reduced flow velocities tested (º/fD"30 and 143) at
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Re"7)7]104 have been used, as they are closest to the two conditions tested in Case
3 (º/fD"15 and Re"7)55]104; º/fD"132 and Re"1)16]105). The general trends of
C

D
and C

L
as functions of y/D are the same as those in Case 3; compare Figure 9 with

Figure 7 [for similar Re, the comparison should be made between Figures 9(a b) and 7(a)].
Similarly to Figure 7, Figure 9 shows that the amount of hysteresis decreases markedly
when º/fD is increased from 30 in Figure 9(a) to 143 in Figure 9(b). However, the amount of
hysteresis in Case 2 (Figure 9) is significantly smaller than in Case 3 (Figure 7). This
discrepancy is believed to be due mostly to the difference in A/D: A/D"0)047 for Case
2 and A/D"0)17 for Case 3.

Case 4 (¸/D"3)97, ¹/D"!1)05, A/D"0)043, force analysis on the stationary cylinder
in the frequency domain) is similar to Case 2, but with two major differences: (i) instead of
the downstream cylinder, the upstream cylinder is forced to oscillate, while measuring the
forces on the downstream, stationary cylinder; and (ii) the oscillation amplitude is about
10% less than that used in Case 2, i.e., A/D"0)043 instead of 0)047. The magnitudes of the
fluidelastic force coefficients, DCI

D
D and DCI

L
D, for Re"7)1]104 are plotted against º/fD in

Figure 10(a), and the corresponding phase angle of CI
D

for the downstream cylinder with
respect to y(t) for the upstream one, /

D
, in Figure 10(b). For this case, DCI

L
D is very small, and

this results in large errors in /
L

and hence leads to unreliable results; therefore, /
L

is not
presented here. Figure 10 shows that the values for DCI

D
D, DCI

L
D, and /

D
remain roughly

constant for º/fD larger than about 60. For º/fD smaller than 60, both DCI
D
D and /

D
deviate

rapidly from the corresponding asymptotic values. These results hold true for all values of
Re tested. Over the range of Re from 4]104 to 1]105 considered, the whole DCI

D
D curve is

shifted up by a small amount, and the DCI
L
D and /

D
curves remain roughly unchanged with

increasing Re; most importantly, the critical reduced velocity at which DCI
D
D, DCI

L
D and/or

/
D

deviate from the corresponding asymptotic values remain fixed at approximately 60.

8.2.3. In and around the inner lift peak
Though of different ¸/D, both Case 8 (¸/D"2)00, ¹/D"0)17, A/D"0)17, pressure
analysis on the oscillating cylinder in the time domain) and Case 10 (¸/D"1)50,
¹/D"0)20, A/D"0)17, pressure analysis on the oscillating cylinder in the time domain)
are pressure-based tests in the sensitive flow region close to the inner lift peak; see Figure 1.
Consequently, some unusual fluidelastic behaviour is expected from these two cases. The
values of the total force coefficients, C

D
and C

L
, for Cases 8 and 10 are plotted as functions

of y/D in Figures 11 and 12, respectively. It is obvious from Figure 11(a) that the fluidelastic
characteristics for Case 8 at º/fD"15 are extremely complicated. These complexities are
lessened significantly as º/fD is increased to 250, see Figure 11(b). Similarly, for Case 10,
Figure 12 shows the complicated paths traced by the force coefficients, C

D
and C

L
, for

Re"6)8]104 and º/fD"16.
Similarly to Cases 8 and 10, Case 9 (¸/D"2)00, ¸/D"0)10, A/D"0)047, force analysis

on the oscillating cylinder in the frequency domain) is in the area close to the inner lift peak;
see Figure 1. The values for the magnitudes of the fluidelastic forces, DCI

D
D and DCI

L
D, and the

corresponding phase angles, /
D

and /
L
, are plotted as functions of º/fD in Figure 13(a, b).

It is clear that the scatter in the data-points in Figure 13 is quite significant. The scatter is
due mostly to the complexity of the flow in this sensitive flow region. Nevertheless, the
degree of scatter tends to decrease with increasing º/fD; roughly speaking, the results
approach asymptotic values for º/fD larger than about 140.

As shown in Figure 1, Case 5 (¸/D"2)94, ¹/D"!0)50, A/D"0)043, force analysis on
the stationary downstream cylinder in the frequency domain, while oscillating the upstream



Figure 10. The fluidelastic force coefficients, CI
D

and CI
L
, on the stationary, downstream cylinder for Case

4 (¸/D"3)97, ¹/D"!1)05, A/D"0)043) at Re"7)1]104 as functions of the reduced flow velocity, º/fD: (a)
magnitudes, DCI

D
D and DCI

L
D; (b) phase angle of the drag on the downstream cylinder with respect to the displacement

of the upstream one, /
D
. The horizontal lines denote the asymptotes which are defined as the averages of the three

data-points at the largest º/fD.
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Figure 11. Total (steady plus unsteady) force coefficients, C
D

and C
L
, on the oscillating, downstream cylinder for

Case 8 (¸/D"2)00, ¹/D"0)17, A/D"0)17) as functions of cylinder displacement, y/D: (a) Re"7)55]104 and
º/fD"15; (b) Re"2)16]105 and º/fD"250.
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Figure 12. Total (steady plus unsteady) force coefficients, C
D

and C
L
, on the oscillating, downstream cylinder for

Case 10 (¸/D"1)50, ¹/D"0)20, A/D"0)17) at Re"6)8]104 and º/fD"16 as functions of cylinder displace-
ment, y/D.
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cylinder) is on the boundary of the inner lift peak region. Since it is not in the centre of
the sensitive flow region, the flow and consequently the fluidelastic characteristics are
expected to be less complex than for Cases 8—10, but more so that Cases 1—4 already
discussed. The values of DCI

D
D and DCI

L
D are plotted as functions of º/fD in Figure 14(a), and

the corresponding phase angles of the fluid force on the downstream cylinder with respect to
y(t) for the upstream cylinder, /

D
and /

L
, in Figure 14(b); the particular set of experimental

results shown are for Re"7)1]104, which is in the middle of the Re range tested. The
whole set of DCI

L
D data-points is shifted up slightly, and the DCI

D
D, /

D
and /

L
curves remain

roughly unchanged, with increasing Re from 4]104 to 1]105. The general trends and the
critical º/fD of approximately 125, at which the fluidelastic forces depart from their
asymptotic values, remain unaltered over the range of Re considered. Note that the values
for DCI

L
D in Case 5 are much larger than those in Case 4, i.e., roughly 20 times larger!

Evidently, the effect of an oscillating upstream cylinder on the lift of a downstream one can
be quite large.

While the value of ¸/D is similar to those of Cases 8 and 9, the instrumented cylinder in
Case 7 (¸/D"1)84, ¹/D"!0)93, A/D"0)043, force analysis on the stationary cylinder in
the frequency domain) is outside and well removed from the inner lift peak region; see
Figure 1. The magnitudes of the fluidelastic forces, DCI

D
D and DCI

L
D, and the corresponding

phase angles, /
D

and /
L
, are plotted as functions of º/fD in Figure 15(a, b), for

Re"7)1]104. It is clear from Figure 15 that these values remain roughly constant for º/fD
larger than about 50; this is true for all values of Re tested. For this case, both DCI

D
D and DCI

L
D

curves are shifted up very slightly with increasing Re.
From the results presented in this section, it is clear that while the fluidelastic character-

istics are very complex for cylinder positions around the inner lift peak region (Cases 8—10)



Figure 13. The fluidelastic force coefficients, CI
D

and CI
L
, on the oscillating, downstream cylinder for Case

9 (¸/D"2)00, ¹/D"0)10, A/D"0)047) as functions of the reduced flow velocity, º/fD: (a) magnitudes, DCI
D
D and

DCI
L
D; (b) phase angles of the fluid forces with respect to the cylinder displacement, /

D
and /

L
. The horizontal lines

denote the asymptotes which are defined as the averages of the three data-points at the largest º/fD.
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the complexity is reduced moderately on the boundary of the sensitive region (Case 5); and
outside the sensitive flow region (Case 7), the complexity is lessened substantially.



Figure 14. The fluidelastic force coefficients, CI
D

and CI
L
, on the stationary, downstream cylinder for Case

5 (¸/D"2)94, ¹/D"!0)50, A/D"0)043) at Re"7)1]104 as functions of the reduced flow velocity, º/fD:
(a) magnitudes, DCI

D
D and DCI

L
D; (b) phase angles of the fluid forces on the downstream cylinder with respect to the

displacement of the upstream one, /
D

and /
L
. The horizontal lines denote the asymptotes which are defined as the

averages of the three data points at the largest º/fD.
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8.2.4. ¼eak proximity interference
It can be seen from Figure 1 that Case 6 (¸/D"2)00, ¹/D"0)92, A/D"0)047, force
analysis on the oscillating, upstream cylinder in the frequency domain) is the only case in



Figure 15. The fluidelastic force coefficients, CI
D

and CI
L
, on the stationary, downstream cylinder for Case

7 (¸/D"1)84, ¹/D"!0)93, A/D"0)043) at Re"7)1]104 as functions of the reduced flow velocity, º/fD:
(a) magnitudes, DCI

D
D and DCI

L
D; (b) phase angles of the fluid forces on the downstream cylinder with respect to the

displacement of the upstream one, /
D

and /
L
. The horizontal lines denote the asymptotes which are defined as the

averages of the three data-points at the largest º/fD.
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the weak proximity interference region, i.e., the instrumented cylinder is oscillating up-
stream, where the lift force acting on it is very small, and the drag is affected by the presence
of the downstream cylinder. The values for DCI

D
D and DCI

L
D, and the corresponding phase



Figure 16. The fluidelastic force coefficients, CI
D

and CI
L
, on the oscillating, upstream cylinder for Case

6 (¸/D"2)00, ¹/D"0)92, A/D"0)047) as functions of the reduced flow velocity, º/fD: (a) magnitudes, DCI
D
D and

DCI
L
D; (b) phase angles of the fluid forces with respect to the cylinder displacement, /

D
and /

L
. The horizontal lines

denote the asymptotes which are defined as the averages of the three data-points at the largest º/fD.
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angles, /
D

and /
L
, are plotted as functions of º/fD in Figure 16(a, b). Over the range of

conditions considered, the effects of Re are small. The values of DCI
D
D, DCI

L
D, /

D
and

/
L

remain roughly constant for º/fD larger than about 100. The phase angle in the drag
direction, /

D
, deviates from the steady value at relatively large º/fD. It is noticed that DCI

D
D



TABLE 3
Organization of the cases according to the complexity of fluidielastic force results

Flow
complexity Case Spacing Flow region

Critical
º/fD

Severe 10 (¸/D"1)50, ¹/D"0)20) Inner lift peak, sensitive '250
Severe 8 (¸/D"2)00, ¹/D"0)17) Inner lift peak, sensitive A15s

Severe 9 (¸/D"2)00, ¹/D"0)10) Inner lift peak, sensitive 140
Moderate 5 (¸/D"2)94, ¹/D"!0)50) in the boundary of the inner

lift peak
125

Mild 4 (¸/D"3)97, ¹/D"!1)05) Outside the outer lift peak 60
Mild 3 (¸/D"4)00, ¹/D"1)00) Outside the outer lift peak 15&132
Mild 2 (¸/D"4)00, ¹/D"1)03) Outside the outer lift peak 60
Mild 7 (¸/D"1)84, ¹/D"!0)93) Outside the inner lift peak 50
Mild 1 (¸/D"5)00, ¹/D"0)50) 5D downstream, away from

the sensitive flow regions
(44

Special 6 (¸/D"2)00, ¹/D"0)92) Proximity region, oscillation
and measurement on
upstream cylinder

100

s Only tested at º/fD"15.
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in this case is substantially smaller than in other cases; hence, errors in determining DCI
D
D and

/
D

(especially /
D
) can be expected to be relatively large. Although the general trends in

Figure 16 are reliable, disregarding /
D

would lower the critical reduced flow velocity, at
which the dynamic values start to depart from the asymptotic values, from roughly 100 to
60. The severe deviation of /

D
from its asymptotic value with decreasing º/fD may be one

of the unique characteristics of the fluidelastic forces of an oscillating cylinder located
upstream of another cylinder in the proximity interference region.

8.3. ORGANIZING THE CASES

The static force coefficient map furnished by Zdravkovich (1987), Figure 1, can assist in the
organization of the ten cases tested in this study. In general, when the cylinder under
consideration is outside the sensitive flow regions, the dynamic force coefficients remain
roughly unchanged with respect to changes in º/fD, for º/fD larger than approximately 60.
The critical reduced flow velocity, below which the dynamic force coefficients (DCI

D
D, DCI

L
D,

/
D

or /
L
) depart rapidly from the corresponding asymptotic values, increases significantly

as the cylinder approaches the complex flow regions; specifically, the inner and outer lift
peak regions. Thus, it is possible to arrange the different cases according to the complexity
of the flow surrounding the cylinder. Such an attempt, where nine of the ten cases tested are
organized in order of decreasing flow complexity, is given in Table 3. Note that Case 6 is
considered to be unique (proximity interference) in this set of results, and hence has not been
included in this classification.

9. CONCLUSIONS

The fluidelastic forces for two staggered circular cylinders of equal diameter in air cross-
flow have been measured in a low-speed wind tunnel, using both pressure distribution and
force measurement techniques. One cylinder was forced to oscillate harmonically in the
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transverse direction, while measuring the pressure distribution or forces on the same or the
stationary cylinder. The forcing frequency and free-stream velocity were varied from 1 to
16 Hz and from 10 to 35 m/s, respectively, giving 4]1044Re42]105 and
154º/fD4300. Ten different geometrical arrangements have been considered, concen-
trating mostly in the vicinity of the inner and outer lift peaks, along with one case in the
weak proximity interference region. The pressure distribution measurements were made
with A/D"0)17, and they were processed in the time domain. On the other hand, direct
force measurements were made with A/D"0)047 or 0)043, and the results were processed in
the frequency domain.

Processing the pressure measurement in the time domain gives the actual path traced by
the dynamic forces as the cylinder oscillates. However, pressure distribution measurements
are very tedious, and the data reduction process in the time domain is prone to noise
interference. Data processing is simplified significantly when the force signals are processed
in the frequency domain, where the required signal can be isolated from both noise and
other flow-related signals. However, processing the signals in the frequency domain elimin-
ates the possibility of determining the actual force—displacement loop; instead, only the
mean elliptical paths can be deduced.

A reasonably comprehensive set of experimental data on fluidelastic forces for two
staggered circular cylinders of equal diameter in air cross-flow has been documented. At
large reduced flow velocity, º/fD, the dynamic results approach the asymptotic results. The
corresponding force—displacement plot is a linear path with very little hysteresis. Below
a critical reduced flow velocity, the dynamic forces depart from the corresponding
asymptotic values rapidly with decreasing reduced flow velocity. The departure is portrayed
in terms of diverging magnitude and phase angle of the fluidelastic forces in the frequency
domain. In the time domain, this departure is shown as a significant increase in the
hysteresis of the force—displacement loops, sometimes with changes in the shape of the
loops.

The value of the critical reduced flow velocity at which the fluidelastic forces depart from
the asymptotic values is very sensitive to the underlying flow around the cylinder. For
small-amplitude oscillation, the flow characteristics may be inferred from the static force
coefficient map furnished by Zdravkovich (1987). Away from the sensitive flow regions, such
as the inner and outer lift peaks, the critical reduced flow velocity can be as low as 50. In the
sensitive flow region (i.e., close to the centre of the inner lift peak region), however, this
critical reduced flow velocity can be larger than 250.

A number of unresolved issues remain. One is the strong dependence, in some cases, of the
values of CI

D
and CI

L
on whether it is the upstream or the downstream cylinder that is

oscillated (while measuring the force coefficients on the downstream one). Also, despite the
general agreement on the critical º/fD discussed in the preceding paragraph, the degree of
divergence of CI

D
and CI

L
from their asymptotes as º/fD is reduced varies widely from one

case to another; the reason for that also seems unclear. This and other issues of this type
may be resolved with the aid of flow visualization studies.
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indebted to E. A. Pinnell and P. W. Sychterz for conducting and analysing the pressure-
based measurements.



292 D. S.-K. TING E¹ A¸.
REFERENCES

ACHENBACH, E. 1968 Distribution of local pressure and skin friction around a circular cylinder in
cross-flow up to Re"5]106. Journal of Fluid Mechanics 34, 625—639.

ALLEN, J. H. & VINCENTI, W. G. 1994 Wall interference in a two-dimensional flow wind tunnel, with
consideration of the effect of compressibility. National Advisory Committee for Aeronautics
Report 782.

BATHAM, J. P. 1973 Pressure distributions on circular cylinders at critical Reynolds numbers. Journal
of Fluid Mechanics 57, 209—228.

BEARMAN, P. W. & LUO, S. C. 1988 Investigation of the aerodynamic instability of a square-section
cylinder by forced oscillation. Journal of Fluids and Structures 2, 161—176.

BISHOP, R. E. D. & HASSAN, A. Y. 1964 The lift and drag forces on a circular cylinder oscillating in
a flowing fluid. Proceedings of the Royal Society (London) Series A, 277, 51—75.

BLEVINS, R. D. 1977 Flow-Induced »ibration. New York: Van Nostrand Publishing. (Second edition,
New York: Van Nostrand Publishing, 1990.)

CHEN, S. S. 1987a Flow-Induced »ibration of Circular Cylindrical Structures. Washington: Hemisphere
Publishing.

CHEN, S. S. 1987b A general theory for dynamic instability of tube arrays in crossflow. Journal of Fluids
and Structures 1, 35—53.

CHEN, S. S. 1989 Some issues concerning fluidelastic instability of a group of cylinders in crossflow.
ASME Journal of Pressure »essel ¹echnology 111, 507—518.

CHEN, S. S., ZHU, S. & JENDRZEJCZYK, J. A. 1994 Fluid damping and fluid stiffness of a tube row in
crossflow. In Flow-Induced »ibration-1994 (eds M. K. Au-Yang & K. Fujita), PVP-Vol. 273, pp.
15-31. New York: ASME.

FAGE, A. & FALKNER, V. M. 1931 The flow around a circular cylinder. Aeronautical Research Council
Reports and Memoranda No. 1369.

FUNG, T. C. 1960 Fluctuating lift and drag acting on a cylinder in a flow at supercritical Reynolds
numbers. Journal of the Aerospace Sciences 27, 801—814.

GOYDER, H. G. D. & TEH, C. E. 1984 Measurement of the destabilising forces on a vibrating tube in
a fluid cross flow. Proceedings of ASME Symposium on Flow-Induced »ibration and Noise,
Vol. 2 (eds M. P. Paı̈doussis, M. K. Au-Yang & S. S. Chen), pp. 151—163. New York: ASME.

GRIFFIN, O. M. 1980 OTEC cold water pipe design for problems caused by vortex-excited oscillations.
NRL Memorandum Report 4157, Naval Research Laboratory, Washington, D.C., U.S.A.

HALFMAN, R. L. 1952 Experimental aerodynamic derivatives of a sinusoidally oscillating airfoil in
two-dimensional flow. National Advisory Committee for Aeronautics Report 1108.

HOLMAN, J. P. &. GAJDA, W. J. Jr 1989 Experimental Methods for Engineers, 5th edition. New York:
McGraw-Hill.

LUO, S. C. & BEARMAN, P. W. 1990 Predictions of fluctuating lift on a transversely oscillating
square-section cylinder. Journal of Fluids and Structures 4, 219—228.

MAIR, W. A. & MAULL, D. J. 1971 Aerodynamic behaviour of bodies in the wakes of other bodies. Philosophical
¹ransactions of the Royal Society (London) A, 269, 425—437.
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APPENDIX: NOMENCLATURE

A amplitude of the transverse oscillation
C

D
drag coefficient; positive in the #X direction (see Figure 2)
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C
D0

static drag coefficient when the ‘‘oscillating’’ cylinder is stationary at its mean lift
position; positive in the #X direction (see Figure 2)

CM
D

steady drag coefficient obtained from measurements while one of the cylinders is
oscillating; positive in the #X direction (see Figure 2)

CI
D

dynamic drag coefficient; positive in the #X direction (see Figure 2)
C

L
lift coefficient; positive in the #½ direction (see Figure 2)

C
L0

static lift coefficient when the ‘‘oscillating’’ cylinder is stationary at its mean lift
position; positive in the #½ direction (see Figure 2)

CM
L

steady lift coefficient obtained from measurements while one of the cylinders is
oscillating; positive in the #½ direction (see Figure 2)

CI
L

dynamic lift coefficient; positive in the #½ direction (see Figure 2)
D diameter of the cylinders
f forcing frequency
F force
l length of the cylinder in the wind tunnel test-section
¸ streamwise centre-to-centre distance between the two cylinders (see Figure 2)
P pitch between the centres of the two cylinders (see Figure 2)
q dynamic pressure
Re Reynolds number based on the diameter of the cylinder ("ºD/l)
t time
¹ transverse centre-to-centre distance between the two cylinders (see Figure 2)
º free-stream velocity
¼

r
response parameter ["(1#2A/D) ( fD/ºS)]

y displacement of the oscillating cylinder
l dynamic viscosity
o density of the fluid
/
D

phase angle of CI
D

with respect to cylinder displacement, y(t)
/
L

phase angle of CI
L

with respect to cylinder displacement, y(t)
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